Abstract
1. The activity of 113 Y group neurons was recorded extracellularly in 5 alert squirrel monkeys. Sixty-two cells were recorded in naive animals, and 51 cells were recorded after adaptation of the vestibuloocular reflex (VOR) with the use of telescopic lenses. The animals were lying on their right side, so that head rotation was in the vertical (pitch) plane and optokinetic stimulation elicited vertical eye movement. The responses of most cells, as well as the concurrent eye movement, were studied during 1) the VOR, elicited in darkness or in light by sinusoidal head rotation, 2) visual following, elicited by sinusoidal rotation of a full-field optokinetic drum around the stationary animal, and 3) paradigms of visual-vestibular interaction, elicited by combined sinusoidal vestibular and optokinetic stimulation. Stimulation parameters for both head and drum velocity were usually 0.5 Hz, 35 degrees/s peak velocity. 2. Y group cells respond vigorously during visual following and during suppression of the VOR (produced by in-phase rotation of the head and the optokinetic drum); the response is approximately in-phase with eye velocity during visual following, and approximately in-phase with head velocity during suppression of the VOR. During the VOR in darkness, Y cells usually exhibit only slight modulation. The results suggest a linear interaction of visual following and vestibular signals on Y cells during vertical visual-vestibular interaction. Taking into account the excitatory projection of Y cells to superior rectus and inferior oblique motoneurons, a causal role of the Y group in rapid modification of VOR gain during visual-vestibular interaction is suggested. 3. Nine Y neurons from two animals were recorded continuously, for periods ranging from 30 min to 5 h, while the VOR was being adapted to higher or lower gain. Progressive changes of the gain of the VOR in darkness were evident after approximately 30 min from the initiation of head rotation under visual-vestibular mismatch. Consistent changes of the gain and/or phase of the neuronal response during the VOR in darkness were noted in all cases. The phase of the neuronal response gradually approximated head velocity phase during adaptation of the VOR to low gain, increases in the neuronal gain thereafter ensued; the opposite changes were observed during adaptation of the VOR to high gain. 4. Sixteen Y cells were recorded from 1 animal chronically adapted to high VOR gain with the use of magnifying lenses, and 35 cells were recorded from 2 animals chronically adapted to low VOR gain with the use of miniaturizing lenses.(ABSTRACT TRUNCATED AT 400 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have