Abstract
We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold $X$ degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of $X$ can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have