Abstract

To investigate the influence of radiation reabsorption on the level populations of ions in an expanding laser-produced plasma of intermediate density, we start with the system of rate equations for the population densities coupled with the line-radiation transport equation, the dynamical Doppler effect due to the differential macroscopic velocity field included. In a physically motivated approximation, for spatially varying absorption and emission, and general three-dimensional plasma geometry, an integral equation describing the effect of Lyman-a radiation reabsorption on the spatial behavior of the population density of the upper resonance level is derived. Assuming a sufficiently large velocity gradient so that the Doppler-induced frequency shift dominates the linewidth, after asymptotically evaluating the frequency integral involved in the kernel we are led to a simplified integral equation exhibiting the reduction of radiation reabsorption by Doppler decoupling. In particular, in the case of a cylindrical, radially expanding laser plasma we discuss this Fredholm equation for the reabsorption-influenced population density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.