Abstract
The radiation effect on flame temperature and NO emission of H2-lean (0.2H2+0.8CO) and H2-rich (0.8H2+0.2CO) syngas/air counterflow diffusion flames was numerically investigated using OPPDIF code incorporated with the optical thin model, statistical narrow band model and adiabatic condition. Firstly, the coupled effect of strain rate and radiation was studied. Disparate tendencies of NO emission with an increasing strain rate between H2-lean and H2-rich syngas flames were found at very small strain rate, and the effect of radiation reabsorption on NO formation can be neglected when the strain rate was greater than 100 s−1 for both H2-lean and H2-rich syngas flames. Because the radiation effect is vital to flames with small strain rate, its impact on flame temperature and NO emission was investigated in detail at a strain rate of 10 s−1. The results indicated that NO formation is more sensitive to radiation reabsorption than flame temperature, especially for the H2-rich syngas flame. The underlying mechanism was discovered by using reaction pathway analysis. Furthermore, the radiation effect under CO2 dilution of the syngas fuel was examined. It was demonstrated that the radiation effect on flame temperature became more prominent with the increase of CO2 concentration for both H2-lean and H2-rich syngas. The radiation effect on NO emission increased first and then decreased with an increasing CO2 content for H2-lean syngas, whereas for H2-rich syngas the radiation effect is monotonic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.