Abstract
AbstractWe say two posets are doppelgängers if they have the same number of P-partitions of each height k. We give a uniform framework for bijective proofs that posets are doppelgängers by synthesizing K-theoretic Schubert calculus techniques of H. Thomas and A. Yong with M. Haiman’s rectification bijection and an observation of R. Proctor. Geometrically, these bijections reflect the rational equivalence of certain subvarieties of minuscule flag manifolds. As a special case, we provide the 1st bijective proof of a 1983 theorem of R. Proctor—that plane partitions of height k in a rectangle are equinumerous with plane partitions of height k in a shifted trapezoid.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have