Abstract
AbstractThermal decomposition of Ti3GeC2 MAX phase at 1773 K yields an orange‐colored titania powder. Micro‐XRD of the powder under oscillation mode reveals a pure rutile phase (space group P42/mnm). X‐ray photoelectron spectroscopy confirmed substitutional doping of Ge in the titania lattice. The presence of Ti‐O‐Ge bond was observed in O 1s spectrum and confirmed by the shift in binding energy in Ti 2p3/2 and Ge 3d peaks. The UV‐visible Diffuse Reflectance Spectrum studies on the Ge‐doped titania powder show wide absorption in the visible region (380 to 650 nm) yielding a bandgap of 2.83 eV, which is desirable for photocatalytic applications. Defect states formed due to Ge doping led to lowering of the titania conduction band inducing an orange coloration in the powder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.