Abstract

The therapeutic application of small interfering RNA (siRNA) requires safe nanocarriers for specific and efficient delivery in vivo. Herein, PEGylated cationic cerasomes (PCCs) were fabricated by doping a cationic lipid with a hydroxyl group into nanohybrid cerasomes. Multiple properties of PCCs provide a solution to many of the limitations associated with current platforms for the delivery of siRNA. The polyorganosiloxane surface imparts PCCs with higher morphological stability than conventional liposomes. The PEGylation of the cationic cerasome could protect the cerasome nanoparticles from agglomeration and macrophage capture, reduce protein absorption, and consequently prolong the blood circulating time and enhance the siRNA delivery efficiency. In addition, incorporation of the lipid containing a hydroxyl group further facilitates endosome release. Moreover, PCCs were further used to transport siRNA into the cytosol primarily via endocytosis. When applied to systemic administration, PCCs have demonstrated effective delivery into the liver and preferential uptake by hepatocytes in mice, thereby leading to high siRNA gene-silencing activity. All these results show potential therapeutic applications of PCCs-mediated delivery of siRNA for liver diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.