Abstract

Gas-phase investigations of judiciously doped oxide clusters permit to address fundamental challenges related to, for example, the low-temperature oxidation of CO or the selective conversion of hydrocarbons. Modifying the size and composition of a free cluster in a controlled way enables the modification of local charge effects and of spin states, and spectroscopic studies in combination with computational work help to identify the active site of a catalyst and to unravel mechanistic details. Also, the interplay of the support material with the reactive part of a composite catalyst cluster can be addressed. Examples will be presented demonstrating how and why the gas-phase reactivities of heteronuclear clusters, in comparison with their homonuclear counterparts, toward small, generally rather inert molecules can be increased, decreased, or not significantly affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call