Abstract

Stacked self-assembled In0.5Ga0.5As∕GaAs quantum dot infrared photodetectors grown by low-pressure metal-organic chemical vapor deposition, with and without silicon dopants in the quantum dot layers, are investigated. The increase of dark currents observed at higher doping levels is attributed to higher defect density leading to stronger sequential resonant tunneling and to lowering of the operating temperature of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.