Abstract

We investigate the importance of superconducting order parameter fluctuations in the 122 family of Fe-based superconductors, using high-resolution specific heat and thermal expansion data of various Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals covering a large range of the phase diagram from the strongly underdoped to the overdoped regime. By applying scaling relations of the 3d-XY and the 3d-Lowest-Landau-Level (3d-LLL) fluctuation models to data measured in different magnetic fields, we demonstrate that a strong increase of the critical fluctuation regime is responsible for the transition broadening in magnetic fields, which is a direct consequence of a magnetic-field-induced finite size effect due to a reduction of the effective dimensionality by a decreasing magnetic length scale related to the mean vortex separation and the confinement of quasiparticles in low Landau levels. The fluctuations are stronger in the underdoped and overdoped regimes and appear to be weakest at optimal doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.