Abstract

This work reports the use of a near-UV-LED chip in combination with blue, green-yellow and red emitting doped ZnSe QD@silica nanocomposites to construct a novel WLED with reduced scattering and no reabsorption. Blue, green-yellow and red emitting Cu or Mn doped ZnSe QDs with enlarged Stokes shifts and similar absorption peaks (360-410 nm) were synthesized in liquid paraffin in order to solve the reabsorption problem and also obtain balanced white emission spectra. Silica shells were then coated onto the doped QDs, allowing for the refractive index of the nanocomposites to be tailored while simultaneously improving their compatibility with the epoxy resin. The transparent doped ZnSe QD@SiO2/epoxy composite was then used as a light conversion and encapsulant material in combination with the near-UV-LED chip to fabricate the WLED. This fabricated WLED demonstrated high luminous efficiency and good color chromatics stability, suggesting that WLEDs based on highly fluorescent doped ZnSe QD@silica nanocomposites in combination with near-UV-LED chips may prove to be promising candidates for alternative light sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.