Abstract

AbstractConducting polypyrrole electrodes were prepared by electrochemical polymerization of pyrrole on vacuum‐metallized glass substrates. These electrodes were modified by doping with a range of metal halides as dopant ions having different electronegativity. Electrochemical reduction of nitrobenzene using these electrodes was studied by means of cyclic voltammetry technique in acetonitrile medium containing aqueous HClO4 (0.1M) as supporting electrolyte. It was found that the electronegativity of the dopant ion played a very important role in the electrocatalytic activity. Polypyrrole doped with nickel chloride gave the highest anodic current at the reduction potential of nitrobenzene. The results were explained on the basis of charge transfer efficiency at the electrode–electrolyte interface, which was associated with the acceptor state created by the dopant in the semi‐conducting polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.