Abstract

Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS. To fulfil this gap, we used a protocol in which rats were maintained in continuous W for 3 h in a novel environment, or specifically deprived of PS for 3 days with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. DA neurons in the substantia nigra (A9) and ventral tegmental area (A10), and its dorsocaudal extension in the periaqueductal gray (A10dc), almost never showed a Fos-immunoreactive nucleus, regardless of the experimental condition. The caudal hypothalamic (A11) group showed a moderate activation after PS deprivation and novel environment. During PS-recovery, the zona incerta (A13) group contained a significant number and percentage of double-labeled neurons. These results suggest that some DA neurons (A11) could participate in waking and/or the inhibition of PS during PS deprivation whereas others (A13) would be involved in the control of PS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.