Abstract

The feeding central pattern generator of Aplysia produces motor programs that can differ in the degree to which they are ingestive or egestive. A number of pattern-generating interneurons that play an important role in shaping motor programs have been identified. One of these interneurons, B65, is unusual in that it contains two classical neurotransmitters, dopamine and γ-aminobutyric acid. Here, we study the role of one of these transmitters, dopamine, using a combination of pharmacological and electrophysiological means. We show that B65 uses dopamine to elicit fast synaptic potentials in several follower neurons. Furthermore, we demonstrate that the dopamine antagonist sulpiride mimics the effect of bilateral B65 hyperpolarization on egestive motor programs. Thus our data suggest that dopaminergic transmission serves to increase the degree of egestiveness of motor programs, and decrease the duration of the protraction phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.