Abstract
Encoding and consolidating information through learning and memory is vital in adaptation and survival. Dopamine (DA) is a critical neurotransmitter that modulates behavior. However, the role of DA in learning and memory processes is not well defined. Herein, we used the olfactory adaptive learning paradigm in Caenorhabditis elegans to elucidate the role of DA in the memory pathway. Cat-2 mutant worms with low DA synthesis showed a significant reduction in chemotaxis index (CI) compared to the wild type (WT) after short-term conditioning. In dat-1::ICE worms, having degeneration of DA neurons, there was a significant reduction in adaptive learning and memory. When the worms were trained in the presence of exogenous DA (10 mM) instead of food, a substantial increase in CI value was observed. Furthermore, our results suggest that both dop-1 and dop-3 DA receptors are involved in memory retention. The release of DA during conditioning is essential to initiate the learning pathway. We also noted an enhanced cholinergic receptor activity in the absence of dopaminergic neurons. The strains expressing GCaMP6 in DA neurons (pdat-1::GCaMP-6::mCherry) showed a rise in intracellular calcium influx in the presence of the conditional stimulus after training, suggesting DA neurons are activated during memory recall. These results reveal the critical role of DA in adaptive learning and memory, indicating that DA neurons play a crucial role in the effective processing of cognitive function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have