Abstract

In rabbits, dopamine levels in the retina, but not in the caudate nucleus, showed clear diurnal rhythm, with high values seen in the light phase. Thirty min exposition of dark-adapted rabbits to day-light produced no changes in dopamine levels in the retina. In rabbits treated with alpha-methyl-p-tyrosine, the same light exposition decreased the retinal amine level by 18%, while stimulation with intensive, flickering light significantly decreased the retinal dopamine content by 36%. Experiments performed at noon and midnight, under light or dark conditions, showed the retinal dopamine levels to be very similar in groups kept either at light or dark, irrespective of the time of the day, although in animals deprived of light the amine levels were clearly lower than in those exposed to light, both at noon and midnight. Under all experimental conditions there were no significant changes in dopamine level and utilization in the caudate nucleus. The isolated and superfused retina (preloaded with [3H]-dopamine), when stimulated with flashes of white light (2 Hz, 10 min), released [3H]-radioactivity in a Ca2+-dependent manner. It is concluded that in rabbits, light enhances dopamine levels and utilization selectively in the retina, and the observed diurnal changes in the amine metabolism are dependent on the presence or absence of light, and not on the time of the day. The proposed physiological role(s) of the retinal dopaminergic mechanisms is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call