Abstract

Dopamine is a neurotransmitter that mediates visual function in the retina and diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of blindness; however, the role of dopamine in retinal vascular dysfunction in DR remains unclear. Here, we report a mechanism of hyperglycemic memory (HGM)-induced retinal microvascular dysfunction and the protective effect of dopamine against the HGM-induced retinal microvascular leakage and abnormalities. We found that HGM induced persistent oxidative stress, mitochondrial membrane potential collapse and fission, and adherens junction disassembly and subsequent vascular leakage after blood glucose normalization in the mouse retinas. These persistent hyperglycemic stresses were inhibited by dopamine treatment in human retinal endothelial cells and by intravitreal injection of levodopa in the retinas of HGM mice. Moreover, levodopa supplementation ameliorated HGM-induced pericyte degeneration, acellular capillary and pericyte ghost generation, and endothelial apoptosis in the mouse retinas. Our findings suggest that dopamine alleviates HGM-induced retinal microvascular leakage and abnormalities by inhibiting persistent oxidative stress and mitochondrial dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.