Abstract

We calculated the binding energies of shallow donors and acceptors in a spherical GaAs - Ga 1-x Al x As quantum dot under the combined effect of isotropic hydrostatic pressure and an intense laser. We used a variational approach within the effective mass approximation. The binding energy was computed as a function of hydrostatic pressure, dot sizes and laser field amplitude. The results showed that the impurity binding energy increases with pressure and decreases with the laser field amplitude when other parameters are fixed. We also found that the pressure effects are more dramatic for donor than acceptor impurities, especially for quantum dots with small radii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call