Abstract
Abstractα‐Methylstyrene (MS) and isobutyl vinyl ether (VE) readily polymerize, styrene (S) polymerizes to a small extent, and isobutylene (IB), butadiene (BD), and isoprene (IP) fail to polymerize in the presence of catalytic amounts of AlCl3 when propionitrile, ethyl propionate, and methyl isobutyrate are used as reaction media. MS polymerizes readily and S polymerizes with difficulty in the presence of AlCl3 to yield homopolymers when acrylonitrile (AN) is present and copolymers with ethyl acrylate (EA) and methyl methacrylate (MMA). VE readily homopolymerizes, while IB, BD, and IP fail to polymerize in the presence of AlCl3 and the acrylic monomers. VE readily homopolymerizes, S and MS polymerize to a very small extent, and IB, BD, and IP do not polymerize in the presence of ethylaluminum sesquichloride (EASC) in polar solvents. VE readily homopolymerizes in the presence of EASC and the acrylic monomers. MS polymerizes to a small extent in the presence of EASC and the acrylic monomers to yield equimolar copolymers with EA and MMA and a mixture of cationic homopolymer and equimolar copolymer with AN. S yields equimolar copolymers in low yield in the presence of EASC and the acrylic monomers. IB, BD, and IP in the presence of EASC do not polymerize to any significant extent when EA is present, form AN‐rich copolymers and yield poly(methyl methacrylate) in the presence of MMA. A revised mechanism is presented for the formation of cationic, radical, random, and alternating copolymers as well as alternating copolymer graft copolymers in the copolymerization of donor and acceptor monomers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have