Abstract

The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi–Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call