Abstract

Individuals heterozygous for mutant alleles encoding serum mannose-binding protein (MBP, also known as mannose-binding lectin) show increased susceptibility to infections caused by a wide range of pathogenic microorganisms. To investigate the molecular defects associated with heterozygosity, wild-type rat serum MBP polypeptides (MBP-A: 56% identical in sequence to human MBP) and rat MBP polypeptides containing mutations associated with human immunodeficiency have been coexpressed using a well-characterized mammalian expression system. The resulting proteins are secreted almost exclusively as heterooligomers that are defective in activating the complement cascade. Functional defects are caused by structural changes to the N-terminal collagenous and cysteine-rich domains of MBP, disrupting interactions with associated serine proteases. The dominant effects of the mutations demonstrate how the presence of a single mutant allele gives rise to the molecular defects that lead to the disease phenotype in heterozygous individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.