Abstract

The carbohydrate recognition domains (CRDs) of human serum mannose-binding lectin (MBL) and pulmonary surfactant protein D (SP-D) have distinctive monosaccharide-binding properties, and their N-terminal and collagen domains have very different quaternary structures. We produced a chimeric protein containing the N terminus and collagen domain of human SP-D and the neck region and CRD of human MBL (SP-D/MBLneck+CRD) to create a novel human collectin. The chimera bound to influenza A virus (IAV), inhibited IAV hemagglutination activity and infectivity, and induced aggregation of viral particles to a much greater extent than MBL. Furthermore, SP-D/MBLneck+CRD caused much greater increases in neutrophil uptake of, and respiratory burst responses to, IAV than MBL. These results indicate that pathogen interactions mediated by the MBL CRD are strongly influenced by the N-terminal and collagen-domain backbone to which it is attached. The presence of the CRD of MBL in the chimera resulted in altered monosaccharide binding properties compared with SP-D. As a result, the chimera caused greater aggregation and neutralization of IAV than SP-D. Distinctive functional properties of collectin collagenous domains and CRDs can be exploited to generate novel human collectins with potential for therapy of influenza.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.