Abstract

A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes, and sea ice concentration) has been investigated with the aim of revealing the dominant time scales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the multiple-taper method with singular value decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the southern annular mode (SAM), the Pacific–South American (PSA) teleconnection, the semiannual oscillation (SAO), and the zonal wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition, the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found to be consistent with the occurrence of the positive SAM/negative PSA (SAM+/PSA−) or negative SAM/positive PSA (SAM−/PSA+) combinations, which could have favored the cooling of the sub-Antarctic region and important changes in the Antarctic sea ice distribution since 2000.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call