Abstract
Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s).
Highlights
Plant domestication and the phenotypic modifications it produces have a long history with humans and have involved practices ranging from traditional management to genetic engineering (GE)
In order to determine whether genetic modifications have unintended phenotypic consequences in plants, we identified suitable studies for our analysis by looking for articles published in agricultural and ecological journals, as well as in the thesis database for the National Autonomous University of Mexico (UNAM) for the case of maize
We considered that the only biologically meaningful outliers would be those which corresponded to common garden experiments of the domGE with their domestication without genetic engineering (domNGE) isogenic lines, in which case, and despite the outlier category of the data point with respect to the general model, we did not remove these data points from the rest of the analysis
Summary
Plant domestication and the phenotypic modifications it produces have a long history with humans and have involved practices ranging from traditional management to genetic engineering (GE). Modified crops are domesticated plants, since the genetic modifications are performed in isogenic lines of the crop of interest (Setlow, 1991). The main differences between the two genetic modification techniques involved in domesticated plants are (i) the origin of the novel or foreign DNA that is incorporated in the modified organism, and (ii) the procedure to accomplish such incorporation (Gepts, 2001; Nodari and Guerra, 2001)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have