Abstract

Multicellular, cystic structures, termed domes, have been described previously in epithelia cultured from various tissues that have a known transport or secretory function in vivo and in vitro. We report for the first time dome formation in cells cultured from "covering" and "rest" epithelia of oral tissues: porcine gingival and alveolar mucosa epithelium and epithelial rests of Malassez. As demonstrated by light- and electron microscopy, the morphology of the domes varied with the location of their lumen and the number of cells or cell layers involved in their structure. Sequential observations using phase contrast microscopy and time lapse cinematography of living cultures showed that the domes were dynamic structures with expansion-collapse cycles of between 30 min and 17 h duration. Dome formation in oral epithelia was stimulated by dibutyryl cyclic AMP (dbcAMP, 10(-3) to 10(-6) M) and abolished by ouabain (10(-10) M), an inhibitor of sodium transport. The morphological features and the dynamic nature of domes found in oral epithelia, and their dbcAMP and ouabain responsiveness are similar to those demonstrated previously in several other epithelia that have a known transport function in vivo and in vitro. Such fluid transport is not thought to be a property of oral epithelia in vivo. Our data, however, suggest a similar function of these epithelia cultured in vitro, and perhaps in pathological cyst formation in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call