Abstract

The nonequilibrium dynamics of domain wall initial states in a classical anisotropic Heisenberg chain exhibits a striking coexistence of apparently linear and nonlinear behaviors: the propagation and spreading of the domain wall can be captured quantitatively by linear, i.e., noninteracting, spin wave theory absent its usual justifications; while, simultaneously, for a wide range of easy-plane anisotropies, emission can take the place of stable solitons-a process and objects intrinsically associated with interactions and nonlinearities. The easy-axis domain wall only has transient dynamics, the isotropic one broadens diffusively, while the easy-plane one yields a pair of ballistically counterpropagating domain walls which, unusually, broaden subdiffusively, their width scaling as t^{1/3}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call