Abstract

Cross-domain word representation aims to learn high-quality semantic representations in an under-resourced domain by leveraging information in a resourceful domain. However, most existing methods mainly transfer the semantics of common words across domains, ignoring the semantic relations among domain-specific words. In this paper, we propose a domain structure-based transfer learning method to learn cross-domain representations by leveraging the relations among domain-specific words. To accomplish this, we first construct a semantic graph to capture the latent domain structure using domain-specific co-occurrence information. Then, in the domain adaptation process, beyond domain alignment, we employ Laplacian Eigenmaps to ensure the domain structure is consistently distributed in the learned embedding space. As such, the learned cross-domain word representations not only capture shared semantics across domains, but also maintain the latent domain structure. We performed extensive experiments on two tasks, namely sentiment analysis and query expansion. The experiment results show the effectiveness of our method for tasks in under-resourced domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.