Abstract
Multi-sensor time-series data at different locations contains not only temporal correlation information but also spatial correlation information which is treasure for machine fault diagnosis. Existing graph construction methods mainly apply different data analysis methods to connect nodes and edges. Few works, however, consider the location of the sensor itself and temporal correlation information of multi-sensor time-series data. To mine the relationship between spatial information and temporal information, the multi-sensor temporal-spatial graph is constructed in this paper. Hereinto, the different data points of multi-sensor are severed as different nodes which represents the spatial feature information. The temporal information is contained between different nodes of the same sensor. Moreover, an empirical mode decomposition graph convolution network (EGCN) is proposed to extract the feature. Specifically, the traditional graph convolution operator is changed to empirical mode decomposition which can decompose the input features into multiple intrinsic modal features to achieve adaptive feature extraction and improve the representation capability of the network. Finally, the different fault types can be classified by fully connected layers. Experiments from different test rigs demonstrate that the proposed method achieves a diagnostic accuracy exceeding 99 % under limited fault samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.