Abstract
The bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins with marked specificity differences against lepidopteran pests. We found that some domain combinations made proteins insoluble or prone to degradation by trypsin as most abundant insect gut protease. The soluble and trypsin-stable chimeras, along with the parental proteins Vip3Aa and Vip3Ca, were tested against lepidopteran pests from different continents: Spodoptera exigua, Spodoptera littoralis, Spodoptera frugiperda, Helicoverpa armigera, Mamestra brassicae, Anticarsia gemmatalis, and Ostrinia furnacalis. The exchange of the Nt domain (188 N-terminal amino acids) had little effect on the stability and toxicity (equal or slightly lower) of the resulting chimeric protein against all insects except for S. frugiperda, for which the chimera with the Nt domain from Vip3Aa and the rest of the protein from Vip3Ca showed a significant increase in toxicity compared to the parental Vip3Ca. Chimeras with the C-terminal domain from Vip3Aa (from amino acid 510 of Vip3Aa to the Ct) with the central domain of Vip3Ca (amino acids 189–509 based on the Vip3Aa sequence) made proteins that could not be solubilized. Finally, the chimera including the Ct domain of Vip3Ca and the Nt and central domain from Vip3Aa was unstable. Importantly, an insect species tolerant to Vip3Aa but susceptible to Vip3Ca, such as Ostrinia furnacalis, was also susceptible to chimeras maintaining the Ct domain from Vip3Ca, in agreement with the hypothesis that the Ct region of the protein is the one conferring specificity to Vip3 proteins.
Highlights
Bacillus thuringiensis (Bt) is an aerobic, spore-forming, Gram-positive, and entomopathogenic bacterium belonging to the Bacillus cereus group
The Bt bacterium produces a wide variety of insecticidal proteins [1] along with other virulence factors contributing to its pathogenicity [2]
Two major categories of insecticidal proteins produced by Bt are δ-endotoxins (Cry and Cyt toxins) that form crystals within the sporangium in the sporulation phase, and vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth [1,3,4]
Summary
Bacillus thuringiensis (Bt) is an aerobic, spore-forming, Gram-positive, and entomopathogenic bacterium belonging to the Bacillus cereus group. The Bt bacterium produces a wide variety of insecticidal proteins [1] along with other virulence factors contributing to its pathogenicity [2]. The Vip proteins, mainly those of the Vip3A family, are active against a wide range of lepidopteran pests [1,4]. These proteins do not share structural homology with the Cry proteins, but the toxic action follows the same sequence of events: ingestion, activation by midgut proteases, binding to specific receptors in the midgut epithelium, and pore formation [1,4].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have