Abstract
In this thesis, a new systematic approach is introduced for developing software systems from domain-oriented components. The approach is called Domain Oriented Object Reuse (DOOR) which is based on domain analysis and Generic Software Architectures. The term 'Generic Software Architectures' is used to denote a new technique for building domain reference architectures using architecture schemas. The architecture schemas are used to model the components behaviour and dependency. Components dependencies describe components behaviour in terms of their inter-relationships within the same domain scope. DOOR uses the architecture schemas as a mechanism for specifying design conceptions within the modelled domain. Such conceptions provide design decisions and solutions to domain-specific problems which may be applied in the development of new systems. Previous research in the area of domain analysis and component-oriented reuse has established the need for a systematic approach to component-oriented development which emphasises the presentation side of the solution in the technology. DOOR addresses the presentation issue by organising the domain knowledge into levels of abstractions known to DOOR as sub-domains. These levels are organised in a hierarchical taxonomy tree which contains, in addition to sub-domains, a collection of reusable assets associated with each level. The tree determines the scope of reuse for every domain asset and the boundaries for their application. Thus, DOOR also answers the questions of reuse scope and domain boundaries which have also been raised by the reuse community. DOOR's reuse process combines development for reuse and development with reuse together. With this process, which is supported by a set of integrated tools, a number of guidelines have been introduced to assist in modelling the domain assets and assessing their reusability. The tools are also used for automatic assessment of the domain architecture and the design conceptions of its schemas. Furthermore, when a new system is synthesised, components are retrieved, with the assistance of the tools, according to the scope of reuse within which the system is developed. The retrieval procedure uses the components dependencies for tracing and retrieving the relevant components for the required abstraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have