Abstract

We present a novel approach to intro-to-programming domain model discovery from textbooks using an over-generation and ranking strategy. We first extract candidate key phrases from each chapter in a Computer Science textbook focusing on intro-to-programming and then rank those concepts according to a number of metrics such as the standard tf-idf weight used in information retrieval and metrics produced by other text ranking algorithms. Specifically, we conduct our work in the context of developing an intelligent tutoring system for source code comprehension for which a specification of the key programming concepts is needed - the system monitors students' performance on those concepts and scaffolds their learning process until they show mastery of the concepts. Our experiments with programming concept instruction from Java textbooks indicate that the statistical methods such as KP Miner method are quite competitive compared to other more sophisticated methods. Automated discovery of domain models will lead to more scalable Intelligent Tutoring Systems (ITSs) across topics and domains, which is a major challenge that needs to be addressed if ITSs are to be widely used by millions of learners across many domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.