Abstract

Hyper-realistic avatars in the metaverse have already raised security concerns about deepfake techniques, deepfakes involving generated video “recording” may be mistaken for a real recording of the people it depicts. As a result, deepfake detection has drawn considerable attention in the multimedia forensic community. Though existing methods for deepfake detection achieve fairly good performance under the intra-dataset scenario, many of them gain unsatisfying results in the case of cross-dataset testing with more practical value, where the forged faces in training and testing datasets are from different domains. To tackle this issue, in this paper, we propose a novel Domain-Invariant and Patch-Discriminative feature learning framework - DI&PD. For image-level feature learning, a single-side adversarial domain generalization is introduced to eliminate domain variances and learn domain-invariant features in training samples from different manipulation methods, along with the global and local random crop augmentation strategy to generate more data views of forged images at various scales. A graph structure is then built by splitting the learned image-level feature maps, with each spatial location corresponding to a local patch, which facilitates patch representation learning by message-passing among similar nodes. Two types of center losses are utilized to learn more discriminative features in both image-level and patch-level embedding spaces. Extensive experimental results on several datasets demonstrate the effectiveness and generalization of the proposed method compared with other state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call