Abstract

Domain formation in mica-supported cationic bilayers of dipalmitoyltrimethylammoniumpropane (DPTAP) and dimyristoyltrimethylammoniumpropane (DMTAP), fluorescently doped with an NBD (((7-nitro-2–1, 3-benzoxadiazol-4-yl)amino)caproyl) phospholipid, was investigated with fluorescence microscopy and atomic force microscopy. Heating above the acyl chain melting temperature and cooling to room temperature resulted in nucleation and growth of domains with distinguishable patterns. Fractal patterns were found for DPTAP, whereas DMTAP domains were elongated and triangular with feathery edges. Reducing the cooling rate or probe concentration for DPTAP bilayers resulted in larger, filled-in domains with more rounded edges. However, for DMTAP, cooling rates mainly affected size and only slightly modified domain morphology. In a saline environment, the domains were dark, and the surrounding continuous region was bright and thus contained the fluorescent probe. However, as the salt concentration was decreased, the dark regions percolated (connected), resulting in bright domains. Atomic force microscopy scans along domain edges revealed that the dark regions in fluorescence images were approximately 1.4 nm thicker than the light regions. Additionally, the dark regions were of bilayer thickness, approximately 4 nm. Comparison of these results in bilayers to well-documented behavior in Langmuir monolayers has revealed many similarities (and some differences) and is therefore useful for understanding our observations and identifying possible growth mechanisms that may occur in domain formation in cell membranes or supported membrane systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.