Abstract

Ferroelectric-like nanodomains have been written by applying voltage pulse of different durations to the surface of La0.89Sr0.11MnO3 manganite single crystals and subsequently examined by the piezoresponse force microscope (PFM) technique. The domain wall velocity was then calculated based on conventional PFM procedure. A transition from the non-activated to the activated type domain wall motion has been observed due to the inhomogeneous spatial variation of the tip-induced electric field. The maximum domain size that can develop in a non-activated motion process has been found to be ∼170 nm. The formation of these ferroelectric-like nano domains at room temperature by PFM has been rationalized within phenomenological model based on Landau-Ginzburg formalism. Written domains are sufficiently stable and are attractive for device applications in nonvolatile random-access memories and development of metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call