Abstract
ABSTRACTIn this work, reactive magnetron-sputtered Pb(Zr,Ti)O3thin films were used to fabricate well-ordered nanodot arrays by means of nanosphere lithography (NSL). NSL is based on a two-step etch process by means of, firstly adjusting the diameter of polystyrene spheres in the self-assembled polymeric nanosphere mask using reactive ion etching, and secondly transferring the mask to the substrate by ion milling with adjusted heights. Hence, structures with different aspect ratios can be fabricated.Piezoresponse force microscopy was used as the inspection tool on both non-patterned and patterned films. Both the topography and polarization out of plane and in plane was deduced in this mode. Grains of nanodots with low aspect ratio form domain structures comparable to domains in non-patterned films. In contrast to that, nanodots with a higher aspect ratio form particular structures. The in-plane amplitude images show mostly a bisectioned domain assembly, while the out-of-plane amplitude images show in some cases more complex structures like “c”-shaped domains or multi-domains around a center domain.The patterning of the ferroelectric material was shown to affect the formation of ferroelectric domains. The initial polycrystalline, randomly-ordered films are re-oriented and show domain structures depending on nanodisc diameter and aspect ratio. This may enable tailoring of ferroelectric materials in their piezoelectric and pyroelectric properties by patterning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.