Abstract

Glycosyl phosphatidylinositol (GPI) anchoring, N glycosylation, and O mannosylation of protein occur in the rough endoplasmic reticulum and involve transfer of precursor structures that contain mannose. Direct genetic evidence is presented that dolichol phosphate mannose (Dol-P-Man) synthase, which transfers mannose from GDPMan to the polyisoprenoid dolichol phosphate, is required in vivo for all three biosynthetic pathways leading to these covalent modifications of protein in yeast cells. Temperature-sensitive yeast mutants were isolated after in vitro mutagenesis of the yeast DPM1 gene. At the nonpermissive temperature of 37 degrees C, the dpm1 mutants were blocked in [2-3H]myo-inositol incorporation into protein and accumulated a lipid that could be radiolabeled with both [2-3H]myo-inositol and [2-3H]glucosamine and met existing criteria for an intermediate in GPI anchor biosynthesis. The likeliest explanation for these results is that Dol-P-Man donates the mannose residues needed for completion of the GPI anchor precursor lipid before it can be transferred to protein. Dol-P-Man synthase is also required in vivo for N glycosylation of protein, because (i) dpm1 cells were unable to make the full-length precursor Dol-PP-GlcNAc2Man9Glc3 and instead accumulated the intermediate Dol-PP-GlcNAc2Man5 in their pool of lipid-linked precursor oligosaccharides and (ii) truncated, endoglycosidase H-resistant oligosaccharides were transferred to the N-glycosylated protein invertase after a shift to 37 degrees C. Dol-P-Man synthase is also required in vivo for O mannosylation of protein, because chitinase, normally a 150-kDa O-mannosylated protein, showed a molecular size of 60 kDa, the size predicted for the unglycosylated protein, after shift of the dpm1 mutant to the nonpermissive temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call