Abstract

Changes in both zooplankton community structure and zooplanktivorous predators often accompany the anthropogenic acidification of lakes. While changes in pH can account for many of the observed changes, combined observations from laboratory bioassay and field experiments as well as surveys suggest that these patterns cannot be explained by changes in pH alone. Dissolved organic carbon (DOC) also declines with lake acidification. Because DOC is the primary factor regulating variation in the depth of penetration of ultraviolet radiation (UVR) in lakes, there is also likely to be an increase in UVR levels during acidification. This suggests that changes in UVR may play some role in changes in predator and prey communities during acidification. As a first step toward testing this hypothesis, we examined the UVR tolerance of larvae of two widespread and abundant zooplanktivorous predators. We performed a series of in situ incubation experiments with the sunfish Lepomis and the midge Chaoborus in a low DOC (high UVR) lake and in a moderate DOC (low UVR) lake. Substantial UVR‐induced mortality of both predators was observed in the surface waters of the low DOC lake. The predators differed in their UVR tolerance levels: the sunfish survived for more than a day under high solar radiation conditions in the surface waters of a low DOC lake, while the midge perished in less than a day. These data and past literature are consistent with the hypothesis that UVR may play a role in changes in planktivorous predators and their prey during lake acidification and recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.