Abstract

Heavy atom-free organic chromophores showing absorption in the near-IR region with intersystem crossing (ISC) ability are important for applications in various fields, e.g., photocatalysis and photodynamic therapy. Herein, we studied the photophysical property of a naphthalenediimide (NDI) derivative, in which the NDI chromophore is fused with pentacyclic 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), which shows a strong charge-transfer (CT) absorption band (S0 → 1CT transition) in the near-IR region of 600-740 nm. The effect of extended π-conjugation framework in NDI-DBU compared with the derivative of mono-amino substitution (NDI-NH-Br) was studied by steady-state and nanosecond transient absorption (ns-TA) spectra, electron paramagnetic resonance (EPR) spectroscopy, and theoretical computations. The fluorescence is almost completely quenched for NDI-DBU (ΦF = 1.0%) as compared with NDI-NH-Br (ΦF = 24% in toluene). However, the ISC of NDI-DBU is poor, and the singlet oxygen quantum yield was determined as ΦΔ = 9% versus ΦΔ = 57% for NDI-NH-Br, although the compound has significantly twisted molecular structure. The ns-TA spectral study showed a long-lived triplet excited state (τT = 132 μs) in NDI-DBU, with T1 energy of 1.20-1.44 eV, and the ISC is via the S2 → T3 path, which is verified by theoretical calculations. This study displayed that the twisting of molecular geometry does not always assure efficient ISC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call