Abstract

A triad based on naphthalenediimides (NDI) was prepared to study the intersystem crossing (ISC), the fluorescence-resonance-energy-transfer (FRET), as well as the photoinduced electron transfer (PET) processes. In the triad, the 2-bromo-6-alkylaminoNDI moiety was used as singlet energy donor and the spin converter, whereas 2,6-dialkylaminoNDI was used as the singlet/triplet energy acceptor. This unique structural protocol and thus alignment of the energy levels ensures the competing ISC and FRET in the triad. The photophysical properties of the triad and the reference compounds were studied with steady-state UV-vis absorption spectra, fluorescence spectra, nanosecond transient absorption spectra, cyclic voltammetry, and DFT/TDDFT calculations. FRET was confirmed with steady-state UV-vis absorption and fluorescence spectroscopy. Intramolecular electron transfer was observed in polar solvents, demonstrated by the quenching of both the fluorescence and triplet state of the energy acceptor. Nanosecond transient absorption spectroscopy shows that the T1 state of the triad is exclusively localized on the 2,6-dialkylaminoNDI moiety in the triad upon selective photoexcitation into the energy donor, which indicates the intramolecular triplet state energy transfer. The intermolecular triplet state energy transfer between the two reference compounds was investigated with nanosecond transient absorption spectroscopy. The photophysical properties were rationalized by TDDFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call