Abstract
Long-chain polyunsaturated (LCP) fatty acids derived from linoleic (18:2 n-6) and alpha-linolenic (18:3 n-3) acids are considered essential nutrients in preterm infants. The efficiency by which such fatty acids are released as absorbable products from triacylglycerol was explored in vitro using rat chylomicron triacylglycerol as substrate. When incubated with purified human pancreatic colipase-dependent lipase and colipase, arachidonic acid (20:4 n-6) was released less efficiently than linoleic acid from such triacylglycerol. This difference was not seen when purified human milk bile salt-stimulated lipase (BSSL) was incubated with the triacylglycerol substrate, and it was almost abolished when colipase-dependent lipase (with colipase) and BSSL acted simultaneously, as they do in breast-fed infants. There was no difference in arachidonic acid and eicosapentaenoic acid (20:5 n-3) release rates with either colipase-dependent lipase or BSSL, albeit the release was more rapid with the milk enzyme than with colipase-dependent lipase. Again, the most efficient release as absorbable free fatty acids was achieved when the two lipases operated together. The relative resistance to hydrolysis of arachidonic acid and eicosapentaenoic acid by colipase-dependent lipase was best explained by the localization of the first double bond to the delta-5 position of the respective fatty acid. The results obtained suggest that BSSL is of importance for the efficient use of human milk LCP fatty acids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have