Abstract

The peptide hormone relaxin is recognized for its connective tissue remodeling actions in the reproductive tract during pregnancy and parturition, but it also has vascular remodeling actions independent of pregnancy. Recombinant human relaxin (serelaxin) treatment in male and non-pregnant female rodents enhances passive arterial compliance in the renal vasculature. This review focuses on serelaxin's actions on passive mechanical wall properties in small arteries and highlights the diversity of responses to serelaxin treatment in rodents. Different experimental approaches (duration of serelaxin treatment, rat strain, age) and animal models of disease (obesity, hypertension) will be considered. Most studies in young rodents demonstrate that serelaxin treatment fails to alter passive compliance in resistance-size arteries (mesenteric and femoral arteries and cerebral parenchymal arterioles), suggesting that serelaxin's beneficial effects are minimal in healthy animals. Short-term serelaxin treatment (5d) in aged, obese, and spontaneously hypertensive rats (SHRs) is largely without effect on passive mechanical wall properties. However, a longer duration of serelaxin treatment in SHRs (14d) enhances passive compliance in large muscular arteries as well as resistance-size arteries. In conclusion, serelaxin is capable of vascular remodeling. Its actions are vascular bed-dependent, more prominent in disease, and likely requires a longer duration of treatment to be effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.