Abstract

Anomalous microwave emission (AME) is detected in many astrophysical environments as a foreground feature typically peaking between 20–30 GHz and extending over a 10–60 GHz range. One of the leading candidates for the source of AME is small spinning dust grains. Such grains should be very small (approx. ≤1 nm diameter) in order for the rotational emission to fall within the observed frequency range. In addition, these nanosized grains should possess a significant dipole moment to account for the observed emissivities. These constraints have been shown to be compatible with spinning bare nanosilicate clusters, assuming that ∼1% of the total Si mass budget is held in these ultrasmall grains. Silicate dust can be hydroxylated by processing in the interstellar medium and is generally known to provide seeds for molecular water ice nucleation in denser regions. Herein, we use quantum chemical calculations to investigate how the dipole moment of Mg-rich pyroxenic (MgSiO3) nanoclusters is affected by both accretion of molecular water and dissociative hydration. Our work thus provides an indication of how the formation of water ice mantles is likely to affect the capacity of nanosilicates to generate AME.

Highlights

  • Silicate dust is ubiquitously found in a wide range of astrophysical environments (Henning, 2010)

  • We describe our findings for both hydroxylation and molecular interaction with water for bare (MgSiO3)6 nanosilicate clusters

  • The chemical compositions of the hydrated nanosilicate systems considered in each case are identical, astronomically each relate to distinct processes and regions of the interstellar medium (ISM)

Read more

Summary

Introduction

Silicate dust is ubiquitously found in a wide range of astrophysical environments (Henning, 2010). Chemical nucleation and growth in the circumstellar envelopes of oxygen-rich evolved stars is an important source of silicate dust (Goumans and Bromley, 2012; Gobrecht et al, 2016). From infrared (IR) emission observations, it is inferred that most of these newly formed silicate grains are Mg-rich and have sizes of the order 0.1 μm (diameter) (Norris et al, 2012). Nanograin production from larger grains is predicted to occur close to sources of intense radiation (e.g., massive stars and supernovae) via rotational disruption of dust grains by radiative torques (Hoang et al, 2019).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call