Abstract

This paper is aimed at dissecting and discussing the effect of high pressure on chirogenesis, thus unveiling the role of this universal force in astrochemical and primeval Darwinian scenarios. The first part of this contribution revisits the current status and recent experiments, most dealing with crystalline racemates, for which generation of metastable conglomeratic phases would eventually afford spontaneous resolution and hence enantioenriched mixtures. We then provide an in-depth thermodynamic analysis, based on previous studies of non-electrolyte solutions and dense mixtures accounting for the existence of positive excess volume upon mixing, to simulate the mirror symmetry breaking, the evolution of entropy production and dissipation due to enantiomer conversion. Results clearly suggest that mirror symmetry breaking under high pressure may be a genuine phenomenon and that enantioenrichment from initial scalemic mixtures may also take place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.