Abstract
The practice of 'catch and release' (C&R) angling confers a balance between animal welfare, conservation efforts and preserving the socio-economic interests of recreational angling. However, C&R angling can still cause exhaustion and physical injury, and often exposes the captured fish to the stress of air exposure. Therefore, the true conservation success of C&R angling depends on whether the angled individuals then survive to reproduction and whether there are any persisting effects on subsequent generations. Here we tested the hypothesis that the stress of C&R angling is then passed on to offspring. We experimentally manipulated the C&R experience of wild adult salmon prior to the spawning season. These parental fish either underwent a C&R simulation (which involved exercise with/without air exposure) or were left as control individuals. We then measured the telomere length of the arising offspring (at the larval stage of development) since previous studies have linked a shorter telomere length with reduced fitness/longevity and the rate of telomere loss is thought to be influenced by stress. Family-level telomere length was positively related to rate of growth. However, the telomere lengths of the salmon offspring were unrelated to the C&R experience of their parents. This may be due to there being no intergenerational effect of parental stress exposure on offspring telomeres, or to any potential effects being buffered by the significant telomere elongation mechanisms that are thought to occur during the embryonic and larval stages of development. While this may suggest that C&R angling has a minimal intergenerational effect on offspring fitness, there have been numerous other reports of negative C&R effects, therefore we should still be aiming to mitigate and refine such practices, in order to minimize their impacts on fish populations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have