Abstract
BackgroundThe direct application of photobiomodulation therapy (PBMT) using low-level laser therapy (LLLT) and light emitting diodes (LEDs) combined with a static magnetic field (sMF) (PBMT-sMF) to target tissues is shown to improve muscle performance and recovery. Studies have reported possible PBMT effects when a local distant to the target tissue is irradiated. Notably, the extent of these effects on musculoskeletal performance and the optimal site of irradiation remain unclear, although this information is clinically important since these aspects could directly affect the magnitude of the effect. Therefore, we investigated the effects of local and non-local PBMT-sMF irradiations on musculoskeletal performance and post-exercise recovery before an eccentric exercise protocol.MethodsThis randomized, triple-blind (participants, therapists and assessors), placebo-controlled trial included 30 healthy male volunteers randomly assigned to the placebo, local, and non-local groups. Active or placebo PBMT-sMF was applied to 6 sites of the quadriceps muscle of both legs. An eccentric exercise protocol was used to induce fatigue. The primary outcome was peak torque assessed by maximal voluntary contraction (MVC). The secondary outcomes were delayed onset muscle soreness (DOMS) measured by visual analogue scale (VAS), muscle injury assessed by serum creatine kinase activity (CK), and blood lactate levels. Evaluations were performed before the eccentric exercise protocol (baseline), as well as immediately after and 1, 24, 48, and 72 h upon protocol completion.ResultsTen volunteers were randomized per group and analysed for all outcomes. Compared to the placebo and non-local groups, irradiation with PBMT-SMF led to statistically significant improvement (p < 0.05) with regard to all variables in the local group. The outcomes observed in the non-local group were similar to those in the placebo group with regard to all variables.The volunteers did not report any adverse effects.ConclusionOur results support the current evidence that local irradiation of all exercised muscles promotes ergogenic effects. PBMT-sMF improved performance and reduced muscle fatigue only when applied locally to muscles involved in physical activity.Trial registrationNCT03695458. Registered October 04th 2018.
Highlights
The direct application of photobiomodulation therapy (PBMT) using low-level laser therapy (LLLT) and light emitting diodes (LEDs) combined with a static magnetic field (PBMT-sMF) to target tissues is shown to improve muscle performance and recovery
PBMT-sMF improved performance and reduced muscle fatigue only when applied locally to muscles involved in physical activity
Data were analyzed and no statistically significant differences (p > 0.05) at baseline were observed between all experimental groups according for maximal voluntary contraction (MVC), Creatine kinase (CK), blood lactate and delayed onset muscle soreness (DOMS) variables
Summary
The direct application of photobiomodulation therapy (PBMT) using low-level laser therapy (LLLT) and light emitting diodes (LEDs) combined with a static magnetic field (sMF) (PBMT-sMF) to target tissues is shown to improve muscle performance and recovery. Photobiomodulation therapy (PBMT) refers to the application of electromagnetic radiation to biological tissues using low-power lasers or light-emitting diodes [1], which induces photochemical reactions in cells leading to a biomodulatory therapeutic effects [2, 3], without leading to ablative or thermal adverse reactions [4]. In recent years, this therapy has shown positive effects in the management of several musculoskeletal disorders and inflammatory conditions to promote pain relief and wound healing [5,6,7,8,9,10,11]. It was previously demonstrated that the combination of PBMT and sMF generates greater effects in cellular metabolism than the use of PBMT alone, through synergistic acceleration of cellular electron transfer [29]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.