Abstract

Highly persistent perfluorooctane sulfonate (PFOS) is an industrial fluorinated organic chemical with significant bioaccumulation and biomagnification properties. The purpose of this study was to determine the toxic effects of sublethal PFOS on the aquatic invertebrate organism, narrow-clawed crayfish [Astacus leptodactylus Eschscholtz, 1823]. The 96 h LC50 value was determined as 48.81 mg/L (34.19-63.68 mg/L) with probit analysis. The sublethal experimental design was formed into four groups solvent control (DMSO, dimethyl sulphoxide), non-treated control group, and 1/10 (5 mg/L) and 1/100 (0.5 mg/L) of 96 h LC50 of PFOS, and crayfish were exposed for 48 h, 7 d, and 21 d under laboratory conditions. Total haemocyte counts (THCs) decreased, while the haemolymph total antioxidant status (TAS) values increased (p < 0.05) after exposure to 0.5 and 5 mg/L PFOS for 48 h, 7 d, and 21 d. Haemolymph total oxidative stress (TOS) levels significantly increased at 5 mg/L PFOS concentration (p < 0.05). Catalase (CAT) activities increased at both concentrations after 48 h and 7 d and then returned to control levels after 21 d; whereas superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities did not change in muscle tissue (p > 0.05). GPX and CAT activities decreased, but SOD activity increased in hepatopancreas tissue (p < 0.05). SOD activity at both concentrations and CAT activity at 5 mg/L PFOS exposure decreased in gill tissue, while GPX activity increased at both concentrations of 48 h and 7 d and returned to control values on day 21 of exposure. Histopathological alterations were detected in hepatopancreas and gill tissues. Lamellar deformations, epithelial hyperplasia, and haemocytic infiltrations were observed in the gill tissues, whereas tubular degeneration, tubule loss, necrosis, and lesions in the hepatopancreas tissues were the major recorded alterations. As a result, the sublethal concentrations of PFOS have toxic effects on crayfish and histologically cause tissue damage. Our findings also support a better understanding of the early toxicological effects of PFOS in freshwater ecosystems. Also, it could be concluded that A. leptodactylus is a reliable model for examining histopathological alterations and differences in enzyme activities together with the haemolymph findings in toxicology studies amid aquatic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call