Abstract

Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low marsh, high marsh, and palustrine tidal marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in palustrine and high marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.