Abstract

An artificial financial market is built on top of the Genoa Artificial Stock Market. The market is populated with agents having different trading strategies and they are let to interact with each other. Agents differ in the trading method they use to trade, and they are grouped as noise, technical, statistical analysis, and machine learning traders. The model is validated by the replication of stylized facts in financial asset returns. We were able to replicate the leptokurtic shape of the probability density function, volatility clustering, and the absence of autocorrelation in asset returns. The wealth dynamics for each agent group are analyzed throughout the trading period. Agents with a higher time complexity trading strategy outperform those with a strategy comparing their final wealth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.