Abstract

This study compared 3 correlational (best prediction, linear regression, and feed-forward neural networks) and 2 causal models (recursive structural equation model and recurrent neural networks) for estimating lactation milk yields. The correlational models assumed associations between test-day milk yields (health conditions), while the casual models postulated unidirectional recursive effects between these test-day variables. Wood lactation curves were used to simulate the data and served as a benchmark model. Individual Wood lactation curves provided an excellent parametric interpretation of lactation dynamics, with their prediction accuracies depending on the coverage of the lactation curve dynamics. Best prediction outperformed other models in the absence of mastitis but was suboptimal when mastitis was present and unaccounted for. Recurrent neural networks yielded the highest accuracy when mastitis was present. Although causal models facilitated the inference about the causality underlying lactation, precisely capturing the causal relationships was challenging because the underlying biology was complex. Misspecification of recursive effects in the recursive structural equation model resulted in a loss of accuracy. Hence, modeling causal relationships does not necessarily guarantee improved accuracies. In practice, a parsimonious model is preferred, balancing model complexity and accuracy. In addition to the choice of statistical models, the proper accounting for factors and covariates affecting milk yields is equally crucial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.