Abstract

We study out-of-sample returns on 153 anomalies in equities documented in academic literature. We show that machine learning techniques that aggregates all the anomalies into one mispricing signal are 4 times more profitable than a strategy based on individual anomalies and survive on a liquid universe of stocks. The machine learning also leads to 2 times larger Sharpe ratios with respect to the corresponding standard finance methods. We next study value of international evidence for selection of quantitative strategies that outperform out-of-sample. Past performance of quantitative strategies in the regions other than the US does not help to pick out-of-sample winning strategies in the US. Past evidence from the US, however, captures most of the predictability within the other regions. The value of international evidence in empirical asset pricing is thus very limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.